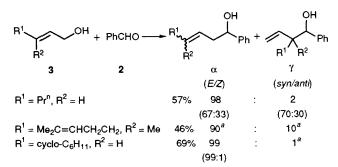

Ultrasound-promoted Carbonyl Allylation by Allylic Alcohols with Palladium–Tin Dichloride in Nonpolar Solvents: Inversed Regiocontrol of Carbonyl Allylation in Polar Solvents

Yoshiro Masuyama,* Akiko Hayakawa and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102, Japan


Heterogeneous carbonyl allylation by γ -substituted allylic alcohols with Pd–SnCl₂ in a nonpolar solvent such as diethyl ether was promoted by ultrasound to cause α -addition, with a regioselectivity which is the inverse of that in homogeneous carbonyl allylation in polar solvents such as dimethylformamide, 1,3-dimethylimidazolidin-2-one and tetrahydrofuran–H₂O.

Ultrasound activates metals such as lithium, magnesium, aluminium, zinc etc., accelerating their organometallic reactions.¹ We have previously reported carbonyl allylation by allylic alcohols with Pd-SnCl₂ in polar solvents such as tetrahydrofuran (THF), dimethylformamide (DMF), 1,3dimethylimidazolidin-2-one (DMI) and dimethyl sulfoxide (DMSO), which dissolve SnCl₂.² The heterogeneous carbonyl allylation by (E)-but-2-en-1-ol 1 with Pd-SnCl₂ proceeds extremely slowly at ambient temperature in nonpolar solvents such as diethyl ether, dichloromethane and chloroform leading to α -addition, with a regioselectivity which is the inverse of that in homogeneous carbonyl allylation in polar solvents. We here report that heterogeneous carbonyl allylation by γ -substituted allylic alcohols with Pd-SnCl₂ in nonpolar solvents is promoted by ultrasound to cause α -regioselective addition.3

Scheme 1 Conditions: $PdCl_2(PhCN)_2$, $SnCl_2$, 10–15 °C, ultrasonication

Acceleration of reactions by ultrasound and regioselectivity (α - or γ -addition) were investigated in the allylation of benzaldehyde **2** by **1** with PdCl₂(PhCN)₂–SnCl₂ in nonpolar solvents (Scheme 1). The results are summarized in Table 1. Ultrasonication for 4 h in diethyl ether led to the highest yield without much lowering of α -selectivity (entries 4 and 5). The reaction did not proceed in hexane, benzene or toluene. Reactions in mixed solvents gave low yields but high α -selectivity (entries 8–10). Yield and α -selectivity were inversely affected by changes in the ratio of **1** to **2** in Et₂O; 20% yield,

Scheme 2 Conditions: $PdCl_2(PhCN)_2$, $SnCl_2$, 10-15 °C, ultrasonication; 4 h; room temp., 48 h. ^{*a*} The ratio of stereoisomers (*E/Z* or *syn/anti*) was not confirmed.

Table 1 Ultrasound-promoted allylation of 2 by 1 with Pd-SnCl₂^a

Entry	Solvent	Time/h ^b	Yield (%) ^c	(E:Z)	;	γ ^d (syn∶anti)
1	Et ₂ O	0^e	8	92	:	8
2	Et ₂ O	2	17	(62:38) 82 (84:16)	:	(54:46) 18 (82:18)
3	Et ₂ O	2f	38	(84:16) 83	:	(82:18) 17
4	Et ₂ O	4	56	(79:21) 78	:	(82:18) 22
5	Et ₂ O	4f	76	(79:21) 75	:	(82:18) 25
6	Et ₂ O	8	46	(88:12) 80	•	(66:34) 20
	2	-		(76:24)		(75:25)
7	Et ₂ O	8 ^f	44	81 (72:25)	:	19 (72:28)
8	Et_2O -hexane	4	15	79 (82,17)	:	21
9	(1:1) Et ₂ O-benzene	4	23	(83:17) 92 (73:27)	:	(70:30) 8 (77:23)
10	(1:1) Et ₂ O-toluene (4:1)	4	34	(73:27) 92 (74:26)	:	(77:23) 8 (67:33)

^{*a*} Ultrasound-promoted carbonyl allylation was carried out using 1 (3 mmol), 2 (1 mmol), PdCl₂(PhCN)₂ (0.02 mmol), and SnCl₂ (6 mmol) in solvent (5 ml) at 10–15 °C. ^{*b*} Ultrasonication time. ^{*c*} Isolated yield. ^{*d*} The ratio was determined by 270 MHz ¹H NMR (Jeol GX-270) and capillary GC (PEG20M, 0.25 mm × 30 m). ^{*e*} The reaction mixture was stirred at ambient temperature for 72 h. ^{*f*} After irradiation without 2 followed by addition of 2, the reaction mixture was stirred at ambient temperature for 24 h.

 α : γ 96: 4 with 1 + 2 in 1: 2 ratio; 68% yield, α : γ 66: 34 with 1 + 2 in 5: 1 ratio.

Allylic alcohols with a more bulky substituent than methyl at the γ -position showed high α -selectivity under the same conditions as those of entry 5 in Table 1, as shown in Scheme 2. The addition to benzaldehyde of allylic alcohols bearing one or two substituents in the α -position, such as but-3-en-2-ol and linalool, afforded products (>96% regioselectivity) analogous to the α -adducts shown in Scheme 1 or 2 in low yields (10–15%).

The ultrasound-promoted carbonyl allylation by γ -substituted allylic alcohols in nonpolar solvents thus leads to α -addition, the inverse of that in carbonyl allylation in polar sovlents.

We thank the Ministry of Education, Science and Culture, Japan [Grant-in-Aid for Scientific Research (C) No. 02640407] for financial support.

Received, 30th March 1992; Com. 2/01674E

References

- S. V. Ley and C. M. R. Low, Ultrasound in Synthesis, in *Reactivity* and Structure Concepts in Organic Chemistry, ed. K. Hafner, J.-M. Lehn, C. W. Rees, P. v. R. Schleyer, B. M. Trost and R. Zahradník, Springer-Verlag, Berlin, 1989, vol. 27; T. J. Mason and J. P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood, Chichester, 1989; C. Einhorn, J. Einhorn and J.-L. Luche, Synthesis, 1989, 787.
- 2 J. P. Takahara, Y. Masuyama and Y. Kurusu, J. Am. Chem. Soc., 1992, 114, 2577.
- 3 A. Yanagisawa, S. Habaue and H. Yamamoto, J. Am. Chem. Soc., 1991, 113, 8955 and references cited therein.